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Abstract

In this report we will understand the basic ideas of conformal field theory. We will first develop
the notion of being conformal invariant. Afterwards we derive the algebra for different dimensions and
will discover the strength of conformal field theories due to the restrictions they impose on the systems.
Towards the end, we quantize the fields and find important features and methods for working with those
theories. Finally we will apply those methods on an example, the free boson formulated on a world sheet.
This report is mainly based on [14], [12], [5] and [10].



1 Conformal Group

Conformal Field Theory is a theory that is symmetric under the Conformal Group. This means that in a classical
setting the equation of motion stays invariant under a conformal transformation, while in the quantum case, the
fields of this theory carry a projective unitary representation of the Conformal Group. This part has as its goal to
define, inspect and understand what conformal invarance is and means.

1.1 Conformal Mappings

We will define the notion of a conformal map in a more general setting and will later work on a more restrictive
setting.

Definition. Let (M, g1) and (M, g2) be two Pseudo-Riemannian Manifolds of dimension d. We call the two Riemannian
metrics conformal equivalent if

∃u ∈ C∞(M,R+) : g1 = ug2.

This means, that the two metrics are rescaled at each point p ∈ M. The rescaling can be different for two different
points, but at a fixed point p ∈ M there exists a fixed strictly positive number u such that g1(a, b) = ug2(a, b) for
all a, b ∈ TpM

Definition. Let (M1, g1) and (M2, g2) be two Pseudo-Riemannian Manifolds of dimension d. A diffeomorphism Φ ∈

C∞(U ⊂ M1,V ⊂ M2) is called a conformal map on U if the pullback of g2 is conformal equivalent to g1 on U.

This means, that we have a local diffeomorphism Φ and a smooth function u on U ⊂ M1 such that

g2 |Φ(p) (dΦ(a), dΦ(b)) = u(p) g1 |p(a, b) ∀p ∈ U, ∀a, b ∈ TpM1.

Definition. We define the Conformal Group ofM as the connected component of the set of all conformal transformations
connected to the identity. As a topology we choose the standard compact open topology which is build up out of balls by the
metric.

Lemma. The Conformal Group is a group. We denote it with Con f (M1,M2)

Proof. Since all the conformal transformations are diffeomorphisms, the inverse exists and is also conformal
with the conformal factor of 1/u. Furthermore, the identity is an obvious conformal map. The composition of
two conformal maps is again a conformal map with the conformal factor u1 · u2. This shows that the conformal
transformations form a group. Since we look at a connected subset of these transformations, they again form a
subgroup. Therefore Con f (M1,M2) is a group. �

Since we are interested in conformal transformation of some space to itself, we declare M1 = M2. We
will usually work with either a Minkowski space or an Euclidean space. We denote this by Rp,q, where we
have the metric ηµν = diag(−1, . . . ,+1, . . . ). We will later look at local conformal transformations of these spaces.
This means, that they don’t have to be defined on the whole manifold. We will always keep in mind, which
transformations are globally defined. But since we want a local field theory, we will later drop the condition of
the global domain in the definition of Con f (Rp,q).

Example. Let M be a Minkowski space. Therefore we have a global chart on M. In this global chart, denoting the
transformation as Φ(x) = x′, we get the condition

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= u(x)ηµν. (1)

Setting the scale factor u(x) = 1 and requiring that the diffeomorphisms are linear, we get the definition of a Lorentz invariant
transformation. This shows that Lorentz transformations are conformal maps.

Example. LetM be an Euclidean space. In such a space we can define an angle by

∠a, b =
g(a, b)√

g(a, a)g(b, b)
∀a, b ∈ TpM.

If we now make a conformal transformation each metric picks up the same factor u(x). Therefore the overall factor is 1 and the
angle between both tangent vectors stays invariant. Thats the reason why one can often read the statement that conformal
maps preserve angles. But this notion of an angle only makes sense on a Riemannian manifold. For Pseudo-Riemannian
manifolds there is no definition of an angle because the square root could be ill-defined. Therefore such a statement is not
possible on pseudo Riemannian manifolds like for example the Minkowski space.
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1.2 Classification of Conformal Maps in d>2

As we later have to find representations of Con f (Rp,q), we proceed by firstly studying local infinitesimal coordinate
transformations. A mathematical rigorous approach would be the definition of Killing fields. This introduces a
lot of mathematical overhang to reach the conclusion. Because of this we will use the way we usually approach
such problems in physics and demand that ε is "small" and develop a local coordinate transformation up to first
order in this small parameter.

x′ρ = xρ + ερ(x) +O(ε2)

If we now use this expansion in eq. (1) we find

ηµνu(x) = ηαβ
∂x′α

∂xµ
∂x′β

∂xν
= (δαµ − ∂µε

α +O(ε2))(δβν − ∂νε
β +O(ε2))ηαβ = gµν − (∂µεν + ∂νεµ) +O(ε2).

If we want to have an infinitesimal conformal map, we therefore require

∂µεν + ∂νεµ = u(x)ηµν (2)

for some strictly positive function u. We actually can determine this function by taking the trace of this equation,
meaning we contract it with ηµν.

2∂µεµ = ηµν(∂µεν + ∂νεµ) = u(x)ηµνηµν = u(x)(p + q) = u(x)d

With this we have a first restriction on the infinitesimal transformation

∂µεν + ∂νεµ =
2
d

(∂ · ε)ηµν. (3)

It turns out that this form of the equation is not particularly useful and we therefore modify it by taking derivatives.
We first take the derivative with respect to ν.

∂ν(∂µεν + ∂νεµ) =
2
d
∂µ(∂ · ε) (4)

If we now introduce the notation ∂2 = ∂µ∂µ and take a further derivative with respect to ν we find

∂µ∂ν(∂ · ε) + ∂2∂νεµ =
2
d
∂µ∂ν(∂ · ε). (5)

If we rewrite equation eq. (5) with swapped indices µ 7→ ν 7→ µ we get

∂ν∂µ(∂ · ε) + ∂2∂µεν =
2
d
∂ν∂µ(∂ · ε).

Now we can add those two equations together to find

2∂µ∂ν(∂ · ε) + ∂2
( 2

d
(∂ · ε)ηµν

)
=

4
d
∂µ∂ν(∂ · ε).

Dividing by two and bringing everything to the left side we end up with(
ηµν∂

2 + (d − 2)∂µ∂ν
)

(∂ · ε) = 0. (6)

This is a first hint that at d = 2 we encounter something different than in other dimensions. Also d = 1 has a
different form. And indeed, if we look at d = 1 the definition of a conformal map is met by every diffeomorphism
on R, while in other dimensions we have more restrictions.

A further formula we will use later can be found if we take the derivative of eq. (4) with respect to ρ and
permute the indices. We end up with the following three equations

∂ρ∂µεν + ∂ρ∂νεµ =
2
d
ηµν∂ρ(∂ · ε), (7a)

∂ν∂ρεµ + ∂µ∂ρεν =
2
d
ηρµ∂ν(∂ · ε), (7b)

∂µ∂νερ + ∂ν∂µερ =
2
d
ηνρ∂µ(∂ · ε). (7c)

If we now look at (b)+(c)-(a) we find the last equation for this section:

2∂µ∂νερ =
2
d

(ηνρ∂µ + ηρµ∂ν − ηµν∂ρ)(∂ · ε). (8)

We now have all the tools to classify the conformal transformations in different dimensions. As mentioned above,
we have seen, that d = 2 needs separate consideration.
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1.2.1 Conformal Transformation in d>2

If we take the trace of eq. (6), we find (d− 1)∂2(∂ · ε) = 0. This shows that ∂ · ε can be at most linear in x. Therefore,
ε is at most quadratic in x with a symmetric quadratic term. Motivated by this, we now can make the Ansatz

εµ = aµ + bµνxν + cµνρxνxρ,

where all parameters are small and cµνρ = cµρν is symmetric. We now use the constraints on the transformation ε
to find constraints on the parameters. It turns out, that we already know some of the transformations.

• Since all constraints contain derivatives, the parameter a is constraint free. It corresponds to the translation
x′ = x+a. We know that this is connected to the momentum generator. Therefore we have a first generator
Pµ = −i∂µ.

• Inserting our Ansatz up to linear order into eq. (3) we find

bνµ + bµν =
2
d

tr(b)ηµν

In general any operator can be split into a symmetric and an anti symmetric part. We see that the
symmetric part is proportional to ηµν with proportionality constant tr(b)/d. This can be written as
bµν = tr(b)/d ηµν + mµν, where mµν is anti symmetric.

– Assuming mµν = 0 we find x′µ = xµ + tr(b)/d xµ = (1 + α)xµ. Therefore this corresponds to an
infinitesimal scale transformation. We claim that the generator is given by D = −ixµ∂µ.

This can be shown by making an expansion exp(iαD)xν = (1 + (iα)(−ixµ∂µ))xν = xν + αxµδνµ =

xν + αxν.

– Assuming α = 0, we have a standard rotation that we already know from the Poincaré group.
The known corresponding generator is Lµν = i(xµ∂ν − xν∂µ).

• Setting the other parameters to zero and only looking at the quadratic term, we use eq. (8) to find

2∂µ∂ν(cραβxαxβ) =
2
d

(ηµρ∂ν(∂ · ε) + ηνρ∂µ(∂ · ε) − ηµν∂ρ(∂ · ε))

2cραβ
(
δανδ

β
µ + δαµδ

β
ν

)
=

2
d

(ηµρ∂ν(2cααβxβ) + ηνρ∂µ(2cααβxβ) − ηµν∂ρ(2cααβxβ))

4cρνµ =
4
d

(ηµρcααν + ηνρcααµ − ηµνc
α
αρ)

If we now define fµ = cααµ/d we can write the transformation in the following form :

x′µ = xµ + εµ = xµ + cµνρxνxρ

= xµ + ηµρ fνxνxρ + ηµν fρxνxρ − ηνρ fµxνxρ

= xµ + 2xµ( f · x) − f µx2.

We claim that the generator for this transformation is given by Kµ = −i(2xµxν∂ν − x2∂µ). That in turn can
be verified by a simple calculation

exp(i f µKµ)xα = (1 + i f µ(−i(2xµxν∂ν − x2∂µ)))xα = xα − f µδαµx2 + f µ2xµxνδαν = xα + 2( f · x)xα − f αx2

We call this transformation Special Conformal Transformation and abbreviate it with SCT.

In summary we found four different types of transformations. This is a first classification of the Conformal
Group. The next step is to build the algebra corresponding to these four generators. We hope that we will find
the Poincaré algebra as a subalgebra since the Poincaré transformations are part of the Conformal Group.

Example. We want to get an intuitive understanding for the SCT. For this we need to find a finite form for it, since we
intuitively think in finite terms. We first claim that

x′µ =
xµ − f µx2

1 − 2( f · x) + f 2x2 (9)

is the finite form. We will proof this at the end of the example. If we now assume eq. (9), we can calculate the norm

x′µx′µ =
xµ − f µx2

1 − 2 f · x + f 2x2

xµ − fµx2

1 − 2 f · x + f 2x2 =
x2(1 − 2 f · x) + f 2x2

(1 − 2 f · x + f 2x2)2 =
x2

1 − 2 f · x + f 2x2
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Figure 1: Visualization of the Special Conformal Transformation as the translation of the inverse coordinate.

This means that

x′µ

x′ · x′
=

xµ − f µx2

1 − 2 f · x + f 2x2

1 − 2 f · x + f 2x2

x2 =
xµ

x · x
− f µ.

This gives us an intuitive understanding of the SCT. The finite transformation is an inversion at a circle followed by a
translation followed by a further inversion. Therefore this is a translation of the inverse coordinates.

To show that eq. (9) is the finite version of the SCT we show that it is a conformal transformation that is infinitesimal
given by the SCT. For this we develop x′ in the parameter f .

x′µ = (xµ − f µx2)(1 − 2 f · x + f 2x2)−1
≈ (xµ − f µx2)(1 + 2x · f + 3x2 f 2) ≈ xµ + 2( f · x)xµ − f µx2

To see that the transformation is conformal we calculate the derivative.

∂x′µ

∂xσ
=

∂σ(xµ − f µx2)
1 − 2( f · x) + f 2x2 + (xµ − f µx2)∂σ(1 − 2( f · x) + f 2x2)−1

=
δ
µ
σ − f µ(δασxα + sαδσα)
1 − 2( f · x) + f 2x2 −

∂σ(1 − 2( f · x) + f 2x2)
(1 − 2( f · x) + f 2x2)2

=
δ
µ
σ − 2 f · xδµσ + b2x2δ

µ
σ − 2 f µxσ + 4( f · x) f µxσ − 2 f 2x2 f µxσ + 2xµ fσ − 2 fσ f µx2

− 2 f 2xµxσ + f µx22 f 2xσ
(1 − 2( f · x) + f 2x2)2

=
δ
µ
σ (1 − 2( f · x) + f 2x2)
(1 − 2( f · x) + f 2x2)2

=
δ
µ
σ

1 − 2( f · x) + f 2x2

Since the derivative is proportional to δµσ , this map is conformal. We further can determine the conformal factor

u(x) =
∂xσ

∂x′σ
∂xρ

∂x′ν
= (1 − 2( f · x) + f 2x2)2.

In summary we have shown that the SCT can be integrated to equation 9 which can be understood as a translation of the
inverse coordinates.

In summary we found the following conformal transformations:

Transformation Finite Form Generator
Translation x′µ = xµ + aµ Pµ = −i∂µ
Dilation x′µ = αxµ D = −ixµ∂µ
Rotation x′µ = Mµ

νxν Lµν = i(xµ∂ν − xν∂µ)

SCT x′µ =
xµ− fµx2

1−2( f ·x)+ f 2x2 Kµ = −i(2xµxν∂ν − x2∂µ)

Figure 2: The conformal transformations with the corresponding generators.
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1.2.2 Conformal Algebra in d>2

To build up the algebra, we first calculate all the commutators.[
D,Pµ

]
= −xα∂α∂µ + ∂µ(xα∂α) = δαµ∂α = iPµ

[
D,Kµ

]
= −i(xα∂α)(−i(2xµxβ∂β − x2∂µ)) − (−i(2xµxβ∂β − x2∂µ))(−i(xα∂α))

= −xα∂α(2xµxβ∂β) + xα∂α(x2∂µ) + 2xµxγ∂γ(x · ∂) − x2∂µ(x · ∂)

= −2ηγµxαδγαxβ∂β − 2ηγµxαxγδβα∂β − 2xαxµ∂α∂β + xαδγαηγεx
ε∂µ + xαxγηγεδεα∂µ

+ xαx2∂α∂µ + 2xµ(x · ∂) + 2xµxγxε∂γ∂ε − x2∂µ − x2(x · ∂)∂µ

= −2xµ(x · ∂) + x2∂µ = −iKµ

[
Kµ,Pν

]
= (−i(2xµ(x · ∂) − x2∂µ)(−i∂ν)) − (−i∂ν)(−i(2xµ(x · ∂) − x2∂µ))

= −2xµ(x · ∂)∂ν + x2∂µ∂ν + 2∂ν(ηαµxα(x · ∂ − ∂ν(x2∂µ)))

= −2xµ(x · ∂)∂ν + x2∂µ∂ν + 2ηνµ(x · ∂) + 2xµδαν∂α

+ 2xµxα∂α∂ν − δανηαβxβ∂µ − xαηαβδ
β
ν∂µ − x2∂µ∂ν

= 2(ηµν(x · ∂) − xµ∂ν + xν∂µ)

= 2i(ηµνD − Lµν)

[
Kρ,Lµν

]
= −i(2xρ(x · ∂) − x2∂ρ)i(xµ∂ν − xν∂µ) − i(xµ∂ν − xν∂µ)(−i(2xρ(x · ∂) − x2∂ρ))

= 2xρ(x · ∂)xµ∂ν − 2xρ(x · ∂)xν∂µ − x2∂ρ(xµ∂ν) + x2∂ρ(xν∂µ)

− xµ∂ν(2xρ(x · ∂)) + xµ∂ν(x2∂ρ) +ν ∂µ(2xρ(x · ∂)) − xν∂µ(x2∂ρ)

= 2xρxε(δεµ∂ν + xµ∂ε∂ν) − 2xρxε(δεν∂µ + xν∂ε∂µ) − x2(ηρµ∂ν + xµ∂ρ∂ν)

+ x2(ηρν∂µ + xν∂ρ∂µ) − 2xµ(ηνρ(x · ∂) + xρδεν∂ε + xρ(x · ∂)∂ν)

+ xµηεγ(δενx
γ∂ρ + xεδγν∂ρ + xεxγ∂ρ∂ν)

+ xν(ηµρ(x · ∂) + xρδ
γ
µ∂γxρ(x · ∂)∂µ) − xνηγε(δεµxγ∂ρ + δ

γ
µxε∂ρ + xεxγ∂µ∂ν)

= x2(ηρν∂µ − ηρµ∂ν) + 2(xνηµρ − xµηνρ)(x · ∂)

= 2(ηµρKν − ηρνKµ)

[
Pρ,Lµν

]
= (−i∂ρ)(i(xµ∂ν − xν∂µ)) − (i(xµ∂ν − xν∂µ))(−i∂ρ)

= ∂ρ(xµ∂ν) − ∂ρ(xν∂µ) − (xµ∂ν∂ρ) + xν∂µ∂ρ

= ηµρ∂ρ + xµ∂ρ∂ν − ηρν∂µ − xν∂ρ∂µ − xµ∂ν∂ρ + xν∂µ∂ρ

= ηρµ∂ν − ηρν∂µ

= i(ηρµPν − ηρνPµ)

[
Kµ,Kν

]
= −i(2xµ(x · ∂) − x2∂µ)(−i)(2xν(x · ∂) − x2∂ν) − (−i(2xµ(x · ∂) − x2∂µ))(−i)(2xν(x · ∂) − x2∂ν)

= −i(4xµxα∂α(xν(x · ∂)) − 2xµxα∂αxγxεηεγ∂ν) − 2x2∂µ(xνxα∂α)

− 4xνxγ∂γ(xµxε∂ε) − 2xνxγ∂γ(x2∂µ) − x2∂ν(2xµxα∂α)

= −2xµx2∂ν − 2xµx2∂ν − 2x2xµ(x · ∂)∂ν − 2x2xν∂µ − 2x2xν(x · ∂)∂µ

+ 2xµx2∂ν + 2xνx2∂µ + 2x2xν(x · ∂)∂µ + 2x2xµ∂ν + 2x2xµ(x · ∂)∂ν = 0

[
Pµ,Pν

]
= −i∂µ(−i∂ν) − (−i∂ν)(−i∂µ) = −

[
∂µ, ∂ν

]
= 0

[D,D] = 0
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We further have the well known commutator of the angular momentum generators given by[
Lµν,Lρσ

]
= i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ).

In summary we have the following commutation relations[
D,Pµ

]
= iPµ,[

D,Kµ
]

= −iKµ,[
Kµ,Pν

]
= 2i(ηµνD − Lµν),[

Kρ,Lµν
]

= 2(ηρµKν − ηρνKµ),[
Pρ,Lµν

]
= 2(ηρµPν − ηρνPµ),[

Lµν,Lρσ
]

= i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ),[
Pµ,Pν

]
=

[
Kµ,Kν

]
= [D,D] = 0.

Considering the number of different generators and keeping in mind that Lµν is anti symmetric we get the
dimension of the conformal algebra N = d + 1 +

d(d−1)
2 + d =

(d+2)(d+1)
2 . We now can define a generator

Jµν = Lµν, J−1,0 = D, J−1,µ =
1
2

(Pµ − Kµ), J0,µ =
1
2

(Pµ + Kµ), Jmn = −Jnm

which combines the commutation relations into one equation. Let m,n, r, s ∈ { −1, 0, ..., (d − 1) }, we claim that

[Jmn, Jrs] = i(ηms Jnr + ηnr Jms − ηmr Jns − ηns Jmr). (10)

Here η is the metric of R1,d+1. To summarize, we found that the conformal algebra is isomorphic to so(d + 1, 1).
We see that eq. (10) holds for m,n = µ, ν since this is just the commutation relation of the angular momentum.

For
[
J−1,0, J−1,0

]
= [D,D] = 0 we again have trivial commutation relations. We see that Pµ = J−1,µ + J0,µ and

Kµ = J0,µ − J−1,µ. Further the asymmetry condition of J implies that the diagonal elements vanish. Using these
relations, one can calculate the commutation relations and show that eq. (10) is really equivalent to the conformal
algebra.

[
D,Pµ

]
=

[
J−1,0, J−1,µ + J0,µ

]
=

[
J−1,0, J−1,µ

]
+

[
J−1,0, J0,µ

]
= i(η−1,0 J0,−1 + η0,−1 J−1,µ − η−1,−1 J0,µ − η0,µ J−1,−1)

+ i(η0,0 J−1,µ + η−1,µ J0,0 − η−1,0 J0,µ − η0,µ J−1,0)

= i(J0,µ + J−1,µ) = iPµ

[
D,Kµ

]
=

[
J−1,0, J0,µ − J−1,µ

]
=

[
J−1,0, J0,µ

]
−

[
J−1,0, J−1,µ

]
= i(η0,0 J−1,µ + η−1,µ J0,0 − η−1,0 J0,µ − η0,µ J−1,0)

− i(η−1,0 J0,−1 + η0,−1 J−1,µ − η−1,−1 J0,µ − η0,µ J−1,−1)

= i(J−1,µ − J0,µ) = −iKµ

[
Kµ,Pν

]
=

[
J0,µ − J−1,µ, J−1,ν + J0,ν

]
=

[
J0,µ, J−1,ν

]
+

[
J0,µ, J0,ν

]
−

[
J−1,µ, J−1,ν

]
−

[
J−1,µ, J0,ν

]
= i(η0,ν Jµ,−1 + ηµ,−1 J0,ν − η0,−1 Jµ,ν − ηµ,ν J0,−1)

+ i(η0,ν Jµ,0 + ηµ,0 J0,ν − η0,0 Jµ,ν − ηµ,ν J0,0)

− i(η−1,ν Jµ,0 + ηµ,−1 J−1,ν − η−1,−1 Jµ,ν − ηµ,ν J−1,−1)

− i(η−1,ν Jµ,0 + ηµ,0 J−1,ν − η−1,0 Jµ,ν − ηµ,ν J−1,0)

= i(ηµ,νD − ηµ,ν(−D) − Jµ,ν − Jµ,ν)

= 2i(ηµνD − Lµν)
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[
Kρ,Lµν

]
=

[
J0,ρ − J−1,ρ, Jµ,ν

]
=

[
J0,ρ, Jµ,ν

]
−

[
J−1,ρ, Jµ,ν

]
= i(η0,ν Jρ,µ + ηρ,µ J−,ν − η0,µ Jρ,ν − ηρ,ν J0,µ)

− i(η−1,ν Jρ,µ + ηρ,µ J−1,ν − η−1,µ Jρ,ν − ηρ,ν J−1,µ)

= i(ηρ,µ(J0,ν − J−1,ν) − ηρ,ν(J0,µ − J−1,µ))

= 2i(ηρ,µKν − ηρ,νKµ)

[
Pρ,Lµν

]
=

[
J0,ρ + J−1,ρ, Jµ,ν

]
=

[
J0,ρ, Jµ,ν

]
+

[
J−1,ρ, Jµ,ν

]
= i(η0,ν Jρ,µ + ηρ,µ J−,ν − η0,µ Jρ,ν − ηρ,ν J0,µ)

+ i(η−1,ν Jρ,µ + ηρ,µ J−1,ν − η−1,µ Jρ,ν − ηρ,ν J−1,µ)

= i(ηρ,µ(J0,ν + J−1,ν) − ηρ,ν(J0,µ − J−1,µ))

= 2i(ηρ,µPν − ηρ,νPµ)

[
Pµ,Pν

]
=

[
J0,µ + J−1,µ, J0,ν + J−1,ν

]
= i(η0,ν Jµ,0 + ηµ,0 J0,ν − η0,0 Jµ,ν − ηµ,ν J0,0)

+ i(η0,ν Jµ,−1 + ηµ,−1 J0,ν − η0,−1 Jµ,ν − ηµ,ν J0,−1)

+ i(η−1,ν Jµ,0 + ηµ,0 J−1,ν − η−1,0 Jµ,ν − ηµ,ν J−1,0)

+ i(η−1,ν Jµ,−1 + ηµ,−1 J−1,ν − η−1,−1 Jµ,ν − ηµ,ν J−1,−1)

= i(−η0,0 Jµ,ν − ηµ,ν(J0,−1 + J−1,0) − η−1,−1 Jµ,ν)

= 0

[
Kµ,Kν

]
= i

[
J0,µ − J−1,µ, J0,ν − J−1,ν

]
= i

[
J0,µ, J0,ν

]
+

[
J−1,µ, J−1,ν

]
−

[
J−1,µ, J0,ν

]
−

[
J0,µ, J−1,ν

]
= −η0,0 Jµ,ν − η−1,−1 Jµ,ν + ηµ,ν J−1,0 + ηµ,ν J0,−1

= −(η0,0 + η−1,−1)Jµ,ν

= 0

This isomorphism is the key idea of the so called embedding space formalism. Here one uses an embedding and
defines actions in R1,d+1 instead of Rd.

1.2.3 Conformal Representation for d>2

To build the representation theory for the conformal group, we use what we already know from the Poincaré
representation. Let ψ(0) be a irreducible representation of the rotation group SO(d). This means we have

Lµνψ(0) = (Sµν)ψ(0).

To find the action of L at an arbitrary point on the space we have to use the Campbell-Baker-Hausdorff formula
to get

Lµνψ(x) = Lµν exp(ix · P)

= exp(ix · P)(exp(−ix · P)Lµνexp(ix · P))ψ(0)

= exp(ix · P)(mµν + Sµν)ψ(0)

= (mµν + Sµν)ψ(x).

Because we have a scale invariant theory, we are tempted to diagonalize the scaling operator D. This means we
have a real value h such that

Dψ(0) = ihψ(0).
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This can be further justified as we assume to work in an irreducible representation of the Pioncaré algebra. By
Schur’s Lemma and because D commutes with Lµν, D must be a multiple of the identity. We can now do the
same steps as for the Poincaré transformation to get Dψ(x).

Dψ(x) = Deix·Pψ(0)

= eix·P(e−ix·PDeix·P)ψ(0)

= eix·P(D − [ix · P,D])

= hψ(x) − iieix·Px · Pψ(0)

= (h + x · ∂)ψ(x)

If we now include the SCT in our algebra, we can find a lowering and raising operator with respect to D.

DKµψ(0) =
([

D,Kµ
]

+ KµD
)
ψ(0) = (−i + ih)Kµψ(0)

Looking at the same equation with Pµ we find a raising operator.

DPµψ(0) =
([

D,Pµ
]

+ Pµ
)
ψ(0) = (i + ih)Pµψ(0)

If we have a way to claim that the eigenvalues of the dilation are bounded from below, we would have a complete
description of the representation theory of Con f (Rp,q) in d>2. We will later see that the two point correlators have
the form

〈ψ1(x)ψ2(y)〉 =
C

|x − y|h1+h2
.

Therefore, we expect the eigenvalues to be positive in order to avoid correlations that grow over distance. This
argument gives the lower bound we need. In summary we have a full description of the representations similar
to the case of ∫ u(N). To complete the discussion, we should derive how Kµ acts on fields besides its lowering
action. Taking a look at the algebra we see that

[
D,Kµ

]
= −iKµ. As D is diagonal, Kµ = 0 at the origin. To find the

action for an arbitrary point we again use the Baker Cambell Hausdorff formula to find

e−ix·PKµeix·P = Kµ + ixν
[
Pν,Kµ

]
−

1
2

xνxρ
[
Pρ,

[
Pν,Kµ

]]
= Kµ + 2xν(ηµνD − Lµν) + xνxρηµνPρ − xνxρ(i)2(ηρµPν − ηρνPµ)

= 2xµD − 2xνLµν + 2xµxD − x2Pµ

If a field transforms in the lowest weight state of D we call it a primary field, while, if it transforms in one of the
higher weight states, we call it a descendant. We will encounter these terms again in the two dimensional case.

This closes the discussion for the higher dimensional case. We have seen that the representations of Con f (Rp,q)
can be built in a similar fashion to the representations of SU(2) and that the group itself consists out of 4 classes
of transformations and furthermore has the Poincaré algebra as a subalgebra.

1.3 Classification of Conformal Maps in d=2

We again start with an infinitesimal local transformation. In the previous part we found eq. (4) which in the two
dimensional case is

∂µεν + ∂νεµ = (∂ · ε)ηµν.

Plugging in µ, ν ∈ 1, 2 with an Euclidean metric we find the conditions for the two dimensional case.

∂1ε2 + ∂2ε1 = 0,

∂1ε1 + ∂1ε1 = ∂1ε1 + ∂2ε2.

If we consider ε1, ε2 as two parts of a complex function, these equations are the well known Cauchy-Riemann
equations which characterize the holomorphic functions. Since we work on a two dimensional space, its pretty
appealing to introduce a complexified version of all the equations, because then we have a simple classification
for conformal transformations, just the holomorphic functions.

z = x0 + ix1, z̄ = x0
− ix1, ε = ε0 + iε1, ∂z =

1
2

(∂0 − i∂1)

Under these circumstances any holomorphic function ε gives rise to a local conformal transformation f (z) =

z + ε(z). Under such a tranformation we have

ds2 = dzdz̄ 7→
∂ f
∂z
∂ f̄
∂z̄

dzdz̄.

This means that the conformal factor is given by
∣∣∣∣ ∂ f
∂z

∣∣∣∣2.
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1.3.1 Conformal Algebra in d=2

To determine the algebra in the two dimensional case, we use the Laurent expansion for holomorphic functions.
So we can write

z′ = z +
∑
Z

εn(−zn+1).

Here the sign is a convention. In order to find the generators, we use this transformation on a field Φ and expand
it up to the first order.

Φ(z′) = Φ(z − εnzn+1) = Φ(z) + ∂zΦ(z) · (z′ − z) = Φ(z) − εnzn+1∂zΦ

This implies that the generators are given by

`n = −zn+1∂z

Calculating the commutators to determine the algebra we find

[`m, `n] = zm+1∂z(xn+1∂z) − zn+1∂z(zm+1∂z) = (n + 1)zm+n+1∂z − (m + 1)zm+n+1∂z = (m − n)`m+n. (11)

This algebra is is called the Witt algebra.
But we also could use the anti holomorphic transformation z̄ 7→ z̄ +

∑
Z −ε̄n z̄n+1. This results in the same

algebra where we just put a bar over everything. We further treat z and z̄ as independent variables, so [`n, ¯̀m] = 0.
This shows that the conformal algebra in two dimensions is the direct sum of two copies of the Witt algebra.

conf(R2) = Witt ⊕Witt

Here we take a short break to understand what we just observed. Since the Laurent expansion has infinitely
many terms, we have infinitely many generators. Accordingly our algebra is infinitely dimensional. Using
Noethers theorem we have infinitely many conserved quantities, allowing us to reduce the degrees of freedom
to zero and therefore solving problems exactly. This is what makes the two dimensional conformal field theory
so appealing and special. But may the requirements for such a system be so demanding that we won’t find any
non trivial systems obeying a conformal symmetry? It turns out, as we will see later, that we can build conformal
invariant non trivial systems. especially String Theory will supply us with many examples of invariant systems.
Therefore the requirements are not too constraining.

We just built up the infinitesimal algebra {`n} on C ' R2, but are now interested in what transformations
can be integrated into globally defined transformations. We already see that most of them can’t be integrated,
since they are not defined everywhere. Especially at z = 0 we have some ambiguities. Trying to fix this problem,
we compactify C resulting in the so called Riemann sphere C ∪ {∞}. But even now, almost all generators are not
well defined in some region, either at z→ 0 or z→∞. If we want the generator to be defined globally we require
them to be non singular in those regions.

• For z→ 0 we need to make sure that the prefactor zn+1 does not diverge.

`n = −zn+1∂z ⇒ n ≥ −1

• For z → ∞ we make a change of variable z = − 1
w and study w → 0. Under this transformation we get

`n = −(−w)−n+1∂w.

`n = −(−
1
w

)n−1∂w ⇒ n ≤ 1

So we see that only the three generators `−1, `0, `1 are well defined globally and therefore have a chance to get
integrated up to a global transformation. We further need to check if those three generators form an subalgebra,
otherwise there is no group that could represent the global transformations. Making use of the commutations
relations eq. (11) we find

[`0, `1] = −`1, [`0, `−1] = `−1, [`1, `−1] = 2`0.

So they indeed form a subalgebra. We could ask why we only found three generators instead of the 4 we found
in higher dimensions. If we recall, we arrived at four generators in higher dimensions since we could split up
the linear term in our Ansatz into two different transformations, one asymmetrical and one symmetrical. The
same happens in two dimensions, where one generator will actually split up into two.

If we now want to find the conformal group, we need to find the finite transformations to which these
generators belong. This has the side effect that we further gain some intuition for these generators.
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• Looking at the definition of `1 this is just −∂z. From the previous section we know that this belongs to
the finite translation z 7→ z + a.

• The second generator is given by `0 = −z∂z. We claim that this generates tranformations of the form
z 7→ az where a ∈ C. If this is the case, we have the previous mentioned splitting into two actions. To see
this one writes z in polar coordinates. We now see `0 = − 1

2 r∂r + i
2 ∂ϕ. This shows that the radial part of a

acts as a dilation while the angular parts end up rotating the phase of z. We therefore end up with two
transformations just as in the higher dimensional case.

• For the last operator `1 we hope to find the SCT to have a correspondence between two and higher
dimensions. If we expand the SCT we find

z 7→
z

cz + 1
≈ z − cz2 + c2z3 = z − cz2 = z − c`1z

and therefore we really have found the two dimensional version of the SCT in the subalgebra.

In summary, we found an infinite dimensional algebra of infinitesimal conformal transformations and a smaller
finite subalgebra. This finite subalgebra can be integrated to form the globally defined finite conformal trans-
formations. We have seen that the two dimensional case is not so different from the higher dimensional case if
we only look at globally defined transformations. If we work with local transformations on the other hand, the
situation changes completely because of the size of the algebra.

1.4 Virasoro Algebra

Since we want to look at unitary protective representations, we should determine the so called second cohomology
group H2(Witt) ' Witt ⊕ C, as we know gives a characterization of these representations. Lets denote g = Witt
and g̃ = Witt ⊕ C. The cohomology commutation relations are given by

[x̃, ỹ]g̃ = [x, y]g + cp(x, y), [x̃, z]g̃ = [z,w]g̃ = 0 ∀x̃, ỹ ∈ g̃, x, y ∈ g, z,w ∈ C,

where p(x, y) is a bilinear c-valued function. Let the extension of `n be given by Ln. We now want to find the
function p. For this we first write down the commutator and then try to find restrictions.

[Lm,Ln] = (m − n)Lm+n + cp(m,n)

We know that the commutator, as it is a Lie bracket is anti symmetric. Because the first term is antisymmetric,
we need that p(m,n) = −p(n,m). Using a redefinition of the generators we can achieve that p(n, 0) = p(1,−1) = 0.
We firstly redefine

L̂n = Ln
cp(n, 0)

n
for n , 0 L̂0 = L0 +

cp(1,−1)
2

and now plug these into the commutator.

[L̂n, L̂0] = [Ln,L0] + [Ln, cp(1,−1)/2] + [cp(n, 0)/n,L0] + [cp(n, 0)/n, cp(1,−1)] + cp(n, 0) = nLn + cp(n, 0) = nL̂n

[L̂1, L̂−1] = 2L0 + cp(1,−1) = 2L̂0

Due to this redefinition p(1,-1)=p(n,0)=0 for the new generators. Lets now omit the hats and write Ln for the
redefined generator. Since we have a commutator it also needs to fulfill the Jacobi identity. We can use that to
show that p(n,m) ∝ δm,−n.

0 = [[Lm,Ln],L0] + [[Ln,L0],Lm] + [[L0,Lm],Ln]

= (m − n)cp(m + n, 0) + ncp(n,m) −mcp(m,n)

= (m + n)cp(n,m).

This shows, that if we are not in the trivial representation (c=0) we have p(n,m)=0 if m , −n. We can use a further
Jacobi identity to find a recursion relation for p(n,m).

0 = [[L−n+1,Ln]L−1] + [[Ln,L−1]L−n+1] + [[L−1,L−n+1],Ln]

= (−2n + 1)cp(1,−1) + (n + 1)cp(n − 1,−n + 1) + (n − 2)cp(−n,n)

Since the first term vanishes after our redefinition, we find the simple form

p(n,−n) =
n + 1
n − 2

p(n − 1,−n + 1).
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If we repeat this until we hit p(2,-2) we find

p(n,−n) =
n + 1
n − 2

n
n − 3

· · · p(2,−2) =
(n + 1)!
(n − 2)!

1
2 · 3

p(2,−2) =

(
n + 1

3

)
p(2,−2).

It is convention to normalize p(2,−2) to 1
2 . The reason is to get a better expression in the simplest CFT, the free

boson. With this normalization we find

p(n,−n) =
1

12
(n + 1)(n − 1).

In summary we now have found the so called Virasoro algebra with the central charge c given by

[Lm,Ln] = (m − n)Lm+n +
c

12
(m3
−m)δm+n,0. (12)

This exact same procedure can be done with the second copy of Witt algebra.
One may now ask what happened to our understanding of the global generators after the redefinition.

Since we know that a finite dimensional algebra does not allow a central extension, we would expect that the
cohomology group restricted to those generators vanishes. And indeed, when we redefined the generators, the
effect was that p(n, 0) = p(1,−1) = 0. Therefore the new generators have the same commutation relation as the
old ones, without any extension. Therefore they still generate the rotations, dilation, translations and the SCT.

2 Fields and Observables

In the previous chapter we looked at the mathematical structure under which we expect a theory to be symmetric,
but we did not mention any details of how such a theory will look like. This is done in the following paragraphs.
We will concentrate on the two dimensional case, since a full coverage would surpass the scope of this report
and the two dimensional case looks most promising because of its algebra.

We work on the Euclidean two dimensional space R2
' C with the standard identification z = x0 + ix1 and

z̄ = x0
− ix1 where we interpret them again as independent. Since we want to have a field theory, we work with

fields defined originally on R2 as ϕ(x0, x1). After our complexification we have ϕ(z, z̄). We now introduce some
terminology for the further discussion.

Definition. Let ϕ(z, z̄) be a field in a CFT.

• Fields depending only on z are called chiral fields: ϕ(z, z̄) = ϕ(z)

• Fields depending only on z̄ are called anti-chiral fields: ϕ(z, z̄) = ϕ(z̄)

• A field transforming under dilation as ϕ′(z, z̄) = λhλ̄h̄ϕ(λz, λ̄z̄) has conformal dimension (h, h̄).

• A field transforming under local conformal transformations z′ = f (z) according to

ϕ′(z, z̄) =

(
∂ f
∂z

)h (
∂ f̄
∂z̄

)h̄

ϕ( f (z), f̄ (z̄))

is called primary field.

• A field that only transforms under global transformations as a primary field is called quasi primary.

• Fields that have a different transformation property are called secondary fields or descendants.

Before we go ahead and look at the quantization we first have to find the infinitesimal transformations of
the fields. We need this result later to proof the so called Conformal Ward Identity.

Let ϕ(z, z̄) be a primary field and f (z) = z + ε(z) a local conformal transformation. We develop both of the
derivatives and the new field up to first order of ε.

(
∂ f
∂z

)h

= (1 + ∂zε)h
≈ 1 + h∂zε,

(
∂ f̄
∂z̄

)h̄

= (1 + ∂z̄ε̄)h̄
≈ 1 + h̄∂z̄ε̄

ϕ(z + ε(z), z̄) ≈ ϕ(z) + ε(z)∂zϕ(z, z̄) ϕ(z, z̄ + ε̄(z̄)) ≈ ϕ(z̄) + ε̄(z̄)∂z̄ϕ(z, z̄)

Putting all of this together, we find the local transformation of our fields:

δε,ε̄ϕ = ϕ′(z, z̄) − ϕ(z, z̄) = (h∂zε + ε∂z + h̄∂z̄ε̄ + ε̄∂z̄)ϕ(z, z̄). (13)
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3 Quantization & Radial Ordering

After we studied the primary objects of our theory, we want to quantize this theory. We again work in a two
dimensional Euclidean space. As the arbitrary time direction we choose x0. We compactify the space direction
x1. The reason will be obvious later on. For this we use a circle of radius 1. This means for z = x0 + ix1 we
have z = z + 2πi. We end up with a cylinder, where the time coordinate is along the cylinder axis and the space
component is around the cylinder. Mapping this back to a complex space we can use our previous work, which
was all done on C. Such a mapping can be achieved by the coordinate transform w = exp(z) = exp(x0) · exp(ix1).
Under this transformation the time variable describes the radius of a circle, while the space coordinate is given
by an angle in polar coordinates. The notion of time is now equivalent to the notion of radius. This will be used
later when we define the time ordering, which in this context could just be called the radial ordering.

Figure 3: Visual representation of the idea of radial ordering. x0 is the time which is translated in to the radius.

Former time translations are now mapped to complex dilation and space translations to rotations. Since we
showed that the central extension for L0 and L̄0 vanishes, we can conclude that the time translation generator, or
in Quantum Mechanics the Hamiltonian can be written as the dilation operator, given as

H = L0 + L̄0.

3.1 Quantization

We consider a primary field of dimensions (h, h̄). Since we expect it to be holomorph we can perform a Laurent
expansion around the origin.

ϕ(z, z̄) =
∑

n,m̄∈Z

z−n−h z̄−m̄−h̄ϕn,m̄.

This can be understood as the equivalent procedure as the quantization using Fourier modes in the normal QFT.
In this spirit we now promote the Laurent modes to operators. Using our previous coordinate change, the origin
corresponds to it = x0 = −∞. Therefore we can also define the in-states

|ϕ〉 = lim
z,z̄→0

ϕ(z, z̄)|0〉

This is again analoge to our procedure in the QFT course. However, similar to the singularity problems in the
Witt algebra we need to make sure that the action of the operators in the expansion of ϕ(z, z̄) are non singular at
z = 0. With the exact same calculation as for the Witt algebra we require that

ϕn,m̄ |0〉 = 0 n > −h, m̄ > −h̄

Since all the prefactors z−n−h vanish for z→ 0, n < h we can summarize the in states as

|ϕ〉 = ϕ−h,−h̄ |0〉.

We need to find the hermitian conjugate field ϕ†. Since we work with an euclidean metric our time
coordinate x0 is purely imaginary. Therefore, complex conjugation acts as x0

→ −x0 on this coordinate. In
summary, assuming z = exp(x0 + ix1) the hermitian conjugate maps z to 1/z̄. Having this transformation property
of z in mind, we are motivated to define

ϕ†(z, z̄) = z̄−2hz−2h̄ϕ
( 1

z̄
,

1
z

)
.
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To find the relation between the daggered components and the original fields, we perform the Laurent expansion
of ϕ†.

ϕ†(z, z̄) = z̄−2hz−2h̄
∑

n,m̄∈Z

z̄n+hzm̄+h̄ϕn,m̄ =
∑

n,m̄∈Z

z̄n−hzm̄−h̄ϕn,m̄.

But this is the Laurent expansion with shifted indices. Therefore comparing it to the expansion of the first field
we find

ϕ†n,m̄ = ϕ−n,−m̄.

Following the procedure from QFT we define the out states as the daggered in-states. This results in the out state
given by

〈ϕ| = 〈0| ϕh,h̄.

3.2 Energy Momentum Tensor

Let’s make a short excursion back to a classical CFT. Due to the result of Noether’s Theorem we know that any
system with a conformal symmetry xµ 7→ xµ + εµ has an associated conserved current jµ + Tµνεν. This tensor is
called the energy momentum tensor and is conserved for any conformal mapping ε. We can show that it must
be traceless for a classical conformal theory.

0 = ∂µ jµ = (∂µTµν)εν + Tµν∂µεν = 0 +
1
2

Tµν(∂µεν + ∂νεµ) =
1
2

Tµνηµν(∂ · ε)
2
d

=
1
d

T µ
µ (∂ · ε)

Since this holds for any (conformal) transformation, we can deduce that the trace of Tµν vanishes. Being focused
on two Euclidean dimensions, we want to understand how the energy momentum tensor behaves in this case.
We make the change of coordinates as before. Using x0 = 1

2 (z + z̄) and x1 = 1
2i (z − z̄) with the standard tensor

transformation property Tµν = ∂α

∂xµ
∂xβ
∂xν Tαβ, we find the new transformed quantity

Tzz =
1
4

(T00 − 2iT10 − T11 =
1
2

(T00 − iT10)

Tz̄z̄ =
1
4

(T00 + 2iT10 − T11) =
1
2

(T00 + iT10)

Tzz̄ = Tz̄,z = T µ
µ = 0

where we used the tracelessness which implies T00 = −T11. We finally can show that the two non-trivial
components can be lifted to a chiral and an anti chiral field. For this we calculate the derivative of Tzz with respect
to z̄ and of Tz̄z̄ with respect to z. Using the tracelessness of T as well as the symmetry Tµν = Tνµ we end up with

∂z̄Tzz =
1
2

(∂0 + i∂1)
1
2

(T00 − iT10) =
1
4

(∂0T00 + ∂1T10 + i∂1T00 − i∂0T10) = 0,

∂zTz̄z̄ =
1
2

(∂0 − i∂1)
1
2

(T00 + iT10) =
1
4

(∂0T00 + ∂1T10 − i∂1T00 + i∂1T00) = 0.

This shows us that Tzz only depends on z, while Tz̄z̄ is solely a function of z̄. But this is just the definition of a
chiral or an anti chiral field respectively. We therefore showed that the lifted field belonging to Tzz = T(z) is a
chiral field, and Tz̄z̄ = T(z̄) is anti chiral.

3.3 Operator Product Expansion

After the discussion of the energy momentum tensor we want to look at the conserved charges connected to
it. We know that our conserved current j gives rise to an conserved charge Q =

∫
dx1 j0 for any fixed time

x0. Since this conserved charge is associated to the conformal transformation, it is the generator for symmetry
transformations. For any operator A we have therefore δA = [Q,A], where we need to evaluate both at the same
time. Since x0 = const implies |z| = const, the integral over space turns into an integral over a contour C with
radius |z|. As we have many tools to handle these contour integrals we now justify the choice of cylindrical
coordinates. As standard in mathematics and physics, we adopt the convention that the contour integral

∮
dz is

counter clockwise. Because T00 = T(z) + T(z̄), the easiest (and therefore hopefully correct) generalization of the
conserved charge in these coordinates is

Q =
1

2πi

∮
C

(dz T(z)ε(z) + dz̄ T̄(z̄)ε̄(z̄)).

13



Figure 4: Visualization of the deformation of the integral.

The normalization constant in front of the integral is a convention to get rid of later factors that come in, due to
the application of the residue theorem.

In eq. (13) we calculated manually how a field transforms under a conformal transformation. We now have
an easier, more straight forward approach using the conserved charge.

δε,ε̄ϕ(w, w̄) =
1

2πi

∮
C

dz[T(z)ε(z), ϕ(w, w̄)] +
1

2πi

∮
C

dz̄[T̄(z̄)ε̄(z̄), ϕ(w, w̄)].

Before we can compare the two results, we need to differentiate between the case where w and w̄ are in- or outside
of the contour. This reflects, as mentioned before, the time ordering. Therefore we define the time, or in this case
the radial ordering for two operators A and B as

R(A(z)B(w)) =

A(z)B(w) if |z| > |w|

B(w)A(z) if |w| > |z|

To make sense, the integral of the commutator needs to be interpreted as∮
C

dz [A(z),B(w)] =

∮
|z|>|w|

dz A(z)B(w) −
∮
|z|<|w|

B(w)A(z),

Lets define the infinitesimal circular path around w as C(w). This can be seen in fig. 4.

=

∮
C(w)
R(A(z)B(w)).

Applying this relation to the infinitesimal field transformation we find, if we suppress the anti chiral part,

δε,ε̄ϕ(w, w̄) =
1

2πi

∮
C(w)

dz R(T(z)ϕ(w, w̄))ε(z).

As we shown in eq. (13), suppressing the anti chiral part we get

δεε̄ϕ(w, w̄) = h(∂wε(w))ϕ(w, w̄) + ε(w)(∂wϕ(w, w̄)).

We need to rewrite these expression into integrals. Here, the integralform of the Laurent expansion is used, since
it provides the tools to express the derivatives of an holomorphic function as an integral. Applied to this case we
have

h(∂wε(w))ϕ(w, w̄) =
1

2πi

∮
C(w)

dz h
ε(z)

(z − w)2 ϕ(w, w̄) (14)

ε(w)(∂wϕ(w, w̄)) =
1

2πi

∮
C(w)

dz
ε(z)

z − w
∂wϕ(w, w̄) (15)

Finally we can compare the two results and can deduce

R(T(z)ϕ(w, w̄)) =
h

(z − w)2 ϕ(w, w̄) +
1

z − w
∂wϕ(w, w̄) + fnon singular

where f can be any non singular function. The result is the so called Operator Product Expansion (OPE). That
allows to calculate the time ordered product of two operators as a sum of one operator and possibly its derivatives.

It further gives us the option to redefine what we understand under a primary field. We could just use the
OPE as the definition of a primary field. This means, every field that has the same OPE with respect to T or T̄(z̄)
is called a primary field.

From now on, we will suppress the notation of radial ordering and assume that every product of operators
is radial ordered or understood as the radial ordered product.
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Example. As an exercise to better understand the OPE, we will calculate the OPE of the energy momentum tensor with
itself. This will show that it is not a primary field and is the first instance where we see the central charge popping up. As a
starting point we perform a Laurent expansion of the energy momentum tensor. We will shift the indices by 2. The reason
for this can be seen in the subsequent calculations.

T(z) =
∑
n∈Z

z−n−2tn tn =
1

2πi

∮
dz zn+1T(z).

Lets choose the conformal transformation ε(z) = −εnzn+1. We now want to calculate the conserved charge of this transfor-
mation.

Qn =
1

2πi

∮
dz − T(z)εnzn+1 = −

εn

2πi

∑
m∈Z

∮
dztmzn−m−1 = −εntn

This shows that the Laurent modes of the energy momentum tensor are the generators of the infinitesimal conformal
transformations which we noted before by Ln, which is the notation we use from now on again. This is to be expected
since the energy momentum tensor, as we already mentioned before is connected to the conserved current of the conformal
transformation. As shown before, these generators obey the Virasoro algebra. We can use this to determine the OPE.

0 = [Lm,Ln] −
(
(m − n)Lm+n +

c
12

(m3
−m)δm,−n

)
=

∮
C(0)

dz
2πi

∮
C(w)

dw
2πi

zm+1wn+1[T(z),T(w)] −
( c

12
(m3
−m)δm,−n + 2(m + 1)Lm+n − (m + n + 2)Lm+n

)
=

( 1
2πi

)2 ∮
C(0)

dw wn+1
∮

C(w)
dz zm+1T(z)T(w)

−

(
c

12
(m3
−m)δm,−n + 2(m + 1)Lm+n + 0 −

1
2πi

∮
dw (m + n + 2)T(w)wm+n+1

)
=

( 1
2πi

)2 ∮
C(0)

dw wn+1
∮

C(w)
dz zm+1T(z)T(w)

−

(
1

2πi

∮
dw

( c
12

(m3
−m)wm+n−1 + 2(m + 1)wm+n+1T(w) + wm+n+2∂wT(w)

))
=

( 1
2πi

)2 ∮
C(0)

dw wn+1
∮

C(w)
dz zm+1T(z)T(w)

−
1

2πi

∮
dw wn+1

(
(m + 1)m(m − 1)wm−2 c

2 · 2 · 3
+ 2(m + 1)wmT(w) + wm+1∂wT(w)

)
=

( 1
2πi

)2 ∮
C(0)

dw wn+1
∮

C(w)
dz zm+1T(z)T(w)

−
1

2πi

∮
dw wn+1 1

2πi

∮
dz zm+1

(
c/2

(z − w)4 +
2T(w)

(z − w)2 +
∂wT(w)
z − w

)
In summary we find the OPE of the energy momentum tensor.

T(z)T(w) =
c/2

(z − w)4 +
2T(w)

(z − w)2 +
∂wT(w)
z − w

+ fnon singular

We see that it has an extra term in its expansion which is proportional to the central charge c. Therefore, for a non trivial c
T is not a primary field.

Example. If one performs the same calculation as in the previous example, using a primary field, one finds that

[Lm, ϕn] = ((h − 1)m − n)ϕm+n. (16)

3.4 Two and Three Point Correlators

The goal of any quantum field theory is to derive the correlation functions. The restriction of conformal field
theories are strong enough to derive the first two correlators directly. Let’s look at the two point correlator
g(z,w) = 〈ϕ1(z)ϕ2(w)〉

• Translation invariance: can only depend on the difference between the coordinates g(z,w) = g(z − w)

• Rescaling implies λh1+h2 g(λ(z−w)) = g(z−w). Therefore we can directly deduce that g(z−w) =
d12

(z−w)h1+h2
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• For the SCT we need a more detailed calculation, since its not trivial to see how g should behave

〈
ϕ1(z)ϕ2(w)

〉
→

〈 1
z2h1

1
w2h2

ϕ1(−z−1)ϕ2(−w−1)
〉

=
1

z2h1 w2h2

d12

(−z−1 + w−1)h1+h2

For this to be invariant we need that h1 = h2.

As a summary we found that all the two point correlators of quasi primary chiral fields can be written as

〈ϕi(z)ϕ j(w)〉 =
di jδhi ,hj

(z − w)2hi
(17)

Example. Lets use the OPE to determine correlator between the energy momentum tensors.

〈T(z)T(w)〉 =
c/2

(z − w)4 +
2〈T(w)〉
(z − w)2 +

〈∂wT(w)〉
z − w

=
c/2

(z − w)4

Here we used the fact that the exception value 〈T(w)〉 vanishes. We see that even the non primary field T obeys the above
mentioned rule.

For the three point correlator we still are able to pin down the exact form. Let 〈ϕ1(z1)ϕ2(z2)ϕ3(z3)〉 = g(z12, z23, z13)

• Transnational invarance dictates that zi j = zi − z j.

• Rescaling again leads to g(z12, z23, z13) =
C123

za
12zb

23zc
13

with the constraint that a + b + c = h1 + h2 + h3.

• For the SCT we can again perform the same procedure and find the constraints a = h1+h2−h3, b = h2+h3−h1

and c = h1 + h3 − h2.

So we have seen that

〈ϕ1(z1)ϕ2(z2)ϕ3(z3)〉 =
C123

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13

.

For higher correlators, there are several possible correlation functions. But we can fix the overall structure in the
form of the arguments. We know that they need to be invariant under conformal transformations. Therefore, we
develop general functions Γ(xi) that are invariant under all types of conformal transformations. Due to rotations
and translations they can again only depend on |xi − x j |. Scaling-invarance implies that only ratios are allowed
in Γ. Having seen how the norm changes under a SCT, we know that

|x′i − x′j | =
|xi − x j |√

(1 − 2 f · xi + f 2x2
i )(1 − 2 f · x j + f 2x2

j )
.

Therefore only cross ratios can form invariant coordinates.

Example. For four points the only possible coordinates for a invariant function are

u =
|x1 − x2 ||x3 − x4 |

|x1 − x3 ||x2 − x4 |
and v =

|x1 − x2 ||x3 − x4 |

|x2 − x3 ||x1 − x4 |

By the same arguments as before we find that the four point correlator has the form of

1
|x1 − x2 |

2h |x2 − x3 |
2h

f (u, v).

The more detailed form of the four point correlator needs far more work. For example, it turns out that f (u, v) can’t be any
function of u and v but has certain restrictions. For example crossing symmetry leads to( v

u

)h
f (u, v) = f (v,u).

We won’t develop the four point correlator any further, the full derivation is shown in [3].

16



3.5 Ward Identities

The Ward identities are connected to the symmetry of the action. We first derive them in a general QFT context
and then we investigate how they can be formulated in a CFT. Let’s write a general infinitesimal transformation
as Φ′(x) = Φ(x) − iωaGaΦ(x) where ωa is a collection of infinitesimal parameters. We assume that the action is
invariant under such a transformation, as long as the parameters are constant. We now use the path integral
formalism and interpret the parameters not as constants but as functions on the space. The action is not invariant
anymore and we can perform a change of variables to Φ′ in the path integral. Let X = Φ(x1) · · ·Φ(xn). If we
assume that the functional integration measure stays invariant and develop the path integral up to the first order
in wa we find

〈X〉 =
1
Z

∫
dΦ′(X + δX) exp

{
− (S[Φ] +

∫
dx∂µ Jµa ωa(x))

}
,

where δX are all the first order terms of the form Φ(x1) · · ·Φ(x j)(iωa(x)GaΦ(x j+1)) · · ·Φ(xn). The zero order terms
match and therefore we end up with the following expression:

〈δX〉 =

∫
dx∂µ〈 j

µ
a (x)X〉ωa(x)

This can be easily rewritten if we introduce a delta function as

∂µ〈 j
µ
a (x)Φ(x1) · · ·Φ(xn)〉 = −i

n∑
j=1

δ(x − x j)〈Φ(x1) · · ·GaΦ(x j) · · ·Φ(xn)〉

We actually could use this as a quantization procedure using path integrals. But we decided to use the Laurent
expansion for the quantization instead, since it is still possible for simple CFTs. We now can apply this to the two
dimensional case. Let ϕ be primary.〈∮

dz
2πi

ε(z)T(z)ϕ1(w1, w̄1) · · ·ϕn(wn, w̄n)
〉

=

n∑
i=1

〈
ϕ1(w1, w̄1) · · ·

∮
wi

dz
2πi

ε(z)T(z)ϕi(wiw̄i)

 · · ·ϕn(wn, w̄n)
〉

=

n∑
i=1

〈
ϕ1(w1, w̄1) · · ·

(
h1∂ε(wi) + ε(wi)∂wi

)
ϕi(wi, w̄i) · · ·ϕn(wn, w̄n)

〉
If we use eq. (14), we find

0 =

∮
dz

2πi
ε(z)

〈T(z)ϕ1(w1, w̄1) · · ·ϕn(wn, w̄n)
〉
−

n∑
i=1

(
hi

(z − wi)2 +
1

z − wi
∂wi

) 〈
ϕ1(w1, w̄1) · · ·ϕn(wn, w̄n

〉
Since this must hold for all holomorphic ε(z), the integrand has to vanish. This leads us to the so called Ward
identity for conformal field theory

〈
T(z)ϕ1(w1, w̄1) · · ·ϕn(wn, w̄n)

〉
=

n∑
i=1

(
hi

(z − wi)2 +
1

z − wi
∂wi

) 〈
ϕ1(w1, w̄1) · · ·ϕn(wn, w̄n)

〉
(18)

3.6 General OPE

We can use the form of the two and three point function as a motivation to determine the general form of the
product of two quasi primary field. We make the Ansatz

ϕi(z)ϕ j(w) =
∑
k,n≥0

Ck
i j

an
ijk

n!
1

(z − w)(hi+hj−hk−n)
∂nϕk(w)

What is the exact reason behind this Ansatz? As we know from the previous examples, due to the scaling
behavior under dilation we need that the denominator is of form (z − w). Further we have chosen two different
variables, where C encodes information about the used fields and a about the derivative. Let’s use this Ansatz
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together with the two point correlation function.

〈
(ϕi(z)ϕ j(1))ϕk(0)

〉
=

∑
l,n≥0

Cl
i j

an
ijl

n!
〈∂nϕl(1)ϕk(0)〉

(z − 1)hi+hj−hl−n

=
∑
l,n≥0

Cl
i j

an
ijl

n!
〈∂n

zϕl(z)ϕk(0)〉|z=1

(z − 1)hi+hj−hl−n

=
∑
l,n≥0

Cl
i j

an
ijl

n!
1

(z − 1)hi+hj−hl−n
∂n

z

( dlkδhl ,hk

z2hk

) ∣∣∣∣∣∣
z=1

=
∑
l,n≥0

Cl
i j

an
ijl

n!
1

(z − 1)hi+hj−hl−n
(−1)nn!δhk ,hl

(
2hk + n − 1

n

)

=
∑
l,n≥0

Cl
i jdlkan

ajk

(
2hk + n − 1

n

)
(−1)n

(z − 1)hi+hj−hl−n
.

However this should be of the same form as the three point correlator. Using this, we can conclude

∑
l,n≥0

Cl
i jdlkan

ajk

(
2hk + n − 1

n

)
(−1)n

(z − 1)hi+hj−hl−n
=

Ci jk

(z − 1)hi+hj−hk zhi+hk−hj
.

Multiplying both sides with (z − 1)hi+hj−hk we find

∑
l,n≥0

Cl
i jdlkan

ajk

(
2hk + n − 1

n

)
(−1)n(z − 1)n =

Ci jk

(1 + z − 1)hi+hk−hj
.

We can use the full Taylor expansion

1
(1 + x)m =

∑
n∈N

(−1)n
(
m + n − 1

n

)
xn

to connect the individual coefficients. Let x = z − 1. Now, comparing coefficients we find

an
ijk =

(
2hk + n − 1

n

)−1

·

(
hk + hi − h j + n − 1

n

)
, Ci jk = Cl

i j · dlk (19)

This gives the complete OPE for two chiral primary fields.
While discussing the OPE of the energy momentum tensor we have seen that the OPE is closely connected

to the commutator. We can perform the same calcualtion as we did with the energy momentum tensor using the
expression

ϕi(z) =
∑

m

ϕm,(i)z−m−hi

to find the commutation relation

[ϕm,(i), ϕn,( j)] =
∑

k

Ck
i jpi jk(m,n)ϕm+n,(k) + di jδm,−n

(
m + hi − 1

2hi − 1

)
where we have

pi jk(m,n) =
∑

r,s∈Z+
0

Ci jk
r,s

(
−m + hi − 1

r

)
·

(
−n + h j − 1

s

)
(20)

Ci jk
r,s = (−1)r (2hk − 1)!

(hi + h j + hk − 2)!

s−1∏
t=0

(2hi − 2 − r − t)
r−1∏
u=0

(2h j − 2 − s − u) (21)

This calculation is very long and therefore not written here. The idea is the same as in the proof of the OPE of the
energy momentum tensor. The first step is to use the expansion of the fields and then assume eq. (20). Write the
commutator in an integral just as we did with the energy momentum tensor and use the assumption. Performing
a few algebraic steps one recovers the OPE conditions eq. (19). This now can be rewritten as a formal proof of
eq. (20) without assuming the result but just assume what we already have proven in eq. (19).

So we calculated the commutators for conformal quasi primary fields. But as mentioned before, there are
many fields that are not quasi primary. Therefore, we have not specified the commutations for all possible fields!
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Example. Let’s compute the norm of the state ϕ−n,(i). Let’s assume n ≥ h. So we find

||ϕ−n,(i) |0〉||2 = 〈0|ϕn,(i)ϕ−n,(i) |0〉

= 〈0|[ϕn,(i), ϕ−n,(i)]|0〉

= C j
iipii j(n,−n)〈0|ϕ0,( j) |0〉 + dii

(
n + hi − 1

2hi − 1

)
= dii

(
n + hi − 1

2hi − 1

)
Now we can choose n = h and find that the norm of a state |ϕ〉 is given by the structure constant of the two point correlator,

〈ϕ|ϕ〉 = dϕϕ.

3.7 Current Algebras

A chiral field with conformal dimension of 1 is usually called a current. Those have a special algebra connected
to them, which is called the Kač-Moody algebra or current algebra. To determine it, we express the currents as a
Laurent expansion and assume that we have N such currents given in our theory. Using what we derived in the
section about the general OPE, we find[

j(i)m, j( j)n

]
=

∑
k

Ck
i jp111(m,n) j(k),m+n + di jmδm,−n. (22)

We can use the expression from the previous section for p111(m,n) to find that it equals to 1. Since the commutator
is antisymmetric, we conclude that the coefficients Ck

i j are antisymmetric in the lower indices.
We now perform a rotation among the fields such that the matrix di j is diagonal. If we rescale all the fields

by certain factors, we can achieve that the matrix d′i j ∝ δi j. In this new basis we can denote the structure constants

as f i jl and are now able to write[
jm, j j

n

]
=

∑
l

f i jl jlm+n + kmδi jδm,−n.

This algebra is usually called the Kač-Moody algebra.

3.8 Normal Ordering

In this part we will introduce the normal ordering of operators as we know it from QFT. For that we first need to
identify what we will consider as a creation and what as an annihilation operator. Remembering that ϕn,m̄ |0〉 = 0
if n > −h, m̄ > −h̄, we can interpret these operators as annihilation operators. We have seen earlier that the
Hamiltonian can be expressed as H = L0 + L̄0. Therefore we interpret the eigenvalues of L0 as the chiral energy.
We require L0 |0〉 = 0. For a chiral primary we can calculate

L0ϕn |0〉 =
[
L0, ϕ0

]
|0〉 = −nϕn |0〉

Putting those two things together, we see that the chiral energy is bounded from below with the values
(h+m) for m ≥ 0. Since we want our creation operators to create states with positive energy, we conclude that

ϕn where n > −h are annihilation operators,

ϕn where n ≤ −h are creation operators.

We can do the exact same for the anti chiral sector using L̄0. The normal ordering prescription is to put all
creation operators to the left. If we now look back to the OPE, the regular part naturally needs to be normal
ordered, and therefore we have

ϕ(z)χ(w) = fsingular +

∞∑
n=0

(z − w)n

n!
N(χ∂nϕ)(w)

where we use the operatorN for the normal ordering. If we apply 1
2πi

∮
dz(z−w)−1 to both sides of the equations,

this takes out the n = 0 term on the RHS. We therefore get

N(χϕ)(w) =

∮
C(w)

dz
2πi

ϕ(z)χ(w)
z − w

. (23)
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Performing a Laurent expansion of the LHS, the coefficients are given by

N(χϕ)n =

∮
C(0)

dw
2πi

wn+hϕ+hχ−1
N(χϕ)(w)

where we made the usual shift of the Laurent expansion

N(χϕ)(w) =
∑
Z

w−n−hϕ−hχ
N(χϕ)n.

If we now plug in the relation 23 we find

N(χϕ)n =

∮
C(0)

dw
2πi

wn+hϕ+hχ−1
∮

C(w)

dz
2πi

ϕ(z)χ(w)
z − w

=

∮
dw
2πi

wn+hϕ+hχ−1
(∮
|z|>|w|

dz
2πi

ϕ(z)χ(w)
z − w

−

∮
|z|<|w|

dz
2πi

χ(w)ϕ(z)
z − w

)
We now concentrate on the first term. For that we first express ϕ and χ as a Laurent series. Using the geometric
series and 1

z−w = 1
z(1−w/z) we find

∮
|z|>|w|

dz
2πi

ϕ(z)χ(w)
z − w

=

∮
|z|>|w|

dz
2πi

1
z − w

∑
r,s

z−r−hϕw−s−hχϕrχs

=

∮
|z|>|w|

dz
2πi

∑
p≥p

∑
r,s

z−r−hϕ−p−1w−s−hχ+pϕrχs

Only the z−1 term contributes, so we find a δ function. This ses r = −hϕ − p. If we now take the outer integral
into account, we find that the first term is given by∮

dw
2πi

∑
p≥0

∑
s

w−s−hχ+p+n+hϕ+hχ−1ϕ
−hϕ−pχs.

Again only the w−1 term contributes and we therefore have that the first term is given by∑
k≤−hϕ

ϕkχn−k .

If we perform the same calculation for the second term we finally find the expression for the Laurent modes of a
normal ordered product as

N(χϕ)n =
∑

k>−hϕ
χn−kϕk +

∑
k≤−hϕ

ϕkχn−k . (24)

4 The Free Boson

To find a non trivial example for a conformal field theory, we look at string theory. We will work out the central
charge of a free Boson. We won’t go into detail how to derive the world sheet action or the general energy
momentum tensor for such a theory, since this would need another project report. Here we will just state these
quantities as an assumption. Details can be found in [2].

4.1 Conformal Symmetry

We define a real massless scalar field X(x0, x1) on a cylindrical euclidean space with the identification x1 = x1 +2π.
The euclidean world sheet action is given by

S =
1

4πκ

∫
dx0dx1

(
(∂0X)2 + (∂1X)2

)
.

Why does this action lead to a conformal invariant theory? The short answer is that we lack any scale factor. The
long answer: It doesn’t. Or more precisely, it only does for a field with vanishing conformal dimension. We can
see this after we make a coordinate transform onto the complex plane using z = ex0 eix1

. Under this transformation
the action now reads

S =
1

4πκ

∫
dzdz̄ ∂X · ∂̄X.
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Let us now verify that for a field of vanishing conformal dimension (X′(x, z̄) = X(w, w̄)) the action stays invariant.

S
′ =

1
4πκ

∫
dzdz̄∂zX′(x, z̄) · ∂z̄X′(z, z̄)

=
1

4πκ

∫
∂z
∂w

dw
∂z̄
∂w̄

dw̄
∂w
∂z
∂wX(w, w̄) ·

∂w̄
∂z̄
∂w̄X(w, w̄)

=
1

4πκ

∫
dwdw̄∂wX(w, w̄) · ∂w̄X(w, w̄)

= S.

Indeed, for a field X of conformal dimension (0,0) this action is conformal invariant. We now derive the equation
of motion for this action.

0 = δXS

=
1

4πκ

∫
dzdz̄

(
∂δX · ∂̄X + ∂X · ∂̄δX

)
=

1
4πκ

∫
dzdz̄

(
∂(δX · ∂̄X) − δX · ∂∂̄X + ∂̄(∂X · δX) − ∂̄∂X · δX

)
= −

1
2πκ

∫
dzdz̄δX(∂∂̄X)

Therefore the equation of motion is given by ∂∂̄X(z, z̄) = 0. This shows that this theory has a chiral and an anti
chiral field.

j(z) = i∂X(z, z̄) and j̄(z̄) = i∂̄X(z, z̄)

Let’s reconsider the derivation of the equation of motion. Here we already used these fields indirectly. The
interesting phenomena is that they are primary and we see that they have conformal dimension (1,0) and (0,1)
respectively. It turns out that the fields j are more useful than the original fields X, which will be even more
obvious after we calculated the correlators.

4.2 Correlator

Lets define K(z, z̄,ww̄) = 〈X(z, z̄)X(w, w̄)〈. We know that this correlator is also the propagator which has to satisfy
the equations of motion as a Greens function.

∂z∂z̄K = −2πκδ(2)(z − w)

From complex analysis we already know this equation and its solution as

K(z, z̄,w, w̄) = −κ log
(
|z − w|2

)
.

This equation seems rather odd for several reasons. First it shows that the field X is not quasi primary and
secondly the correlator increases with greater separation of the two coordinates. The chiral fields on the other
hand are primary fields and therefore the correlator should be of the previously found form eq. (17). To see that
this holds, we calculate

i2
〈∂zX(z, z̄)∂wX(w, w̄)〉 = κ∂z∂w

(
log(z − w) + log(z̄ − w̄)

)
= −

κ

(z − w)2 .

In summary we found that the chiral fields indeed are primary. Doing the same calculation for j̄, one gets the
same correlator with barred coordinates. Therefore we have the normalization constant of the two point function
given as d j j = κ. Since we only have one chiral current in our theory, the anti symmetry of the Laurent Modes in
eq. (22) imply that we have the commutator[

jm, jn
]

= κmδm+n,0.

We now can derive the energy momentum tensor for this theory, where we use the fact that the energy momentum
tensor in String theory can be derived by differentiating the action with respect to the metric, we allow for a
further normalization constant γ.

Tab = 4πκγ
1√
|g|

δS

δgab
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This results in

Tzz = γ∂X∂X = γ j j, Tz,z̄ = Tz̄,z = 0, Tz̄z̄ = γ∂̄X∂̄X.

Now we need to take the normal ordered product, which results in the expression

T(z) = γN( j j)(z)

The normalization constant which is still left can be fixed by our requirement that j(z) is primary with dimension
h = 1. We expand T(z) in Laurent modes which gives

Ln = γN( j j)n = γ
∑
k>−1

jn−k jk + γ
∑
k≤−1

jk jn−k,

where we used eq. (24). Calculating the following commutator will fix the constant γ.

[Lm, jn] = γ[N( j j)m, jn]

= γ
∑
k>−1

(
jm−k

[
jk , jn

]
+

[
jm−k , jn

]
jk
)

+ γ
∑
k≤−1

(
jk

[
jm−k , jn

]
+

[
jk , jn

]
jm−k

)
= −2γκnjm+n

If we compare that to eq. (16), we can conclude that 2γκ = 1. As a result, we now know that the chiral part of the
energy momentum tensor is given by

T(z) =
1

2κ
N( j j)(z)

4.3 Central Charge

We now have everything to finally determine the central charge of the free boson. To do so we use the generator
L2.

〈0|L2L−2 |0〉 = 〈0| [L2,L + −2] |0〉 =
c
2

Lets recall that the Laurent modes are just the Laurent coefficients for the energy momentum tensor, therefore
we have L±2 = 1

2κN( j j)±2. Using this we rewrite

L−2 |0〉 =
1

2κ
j−1 j−1 |0〉

〈0|L2 =
1

2κ
〈0| j1 j1

Plugging this into the commutator we get

c
2

=
1
κ2 〈0| j1 j1 j−1 j−1 |0〉

=
1

4κ2

(
〈0| j1 j−1 j1 j−1 |0〉 + 〈0| j1

[
j1, j−1

]
j−1

)
=

1
4κ2

(
〈0|

[
j1, j−1

] [
j1, j−1

]
|0〉 + κ〈0|

[
j1, j−1

]
|0〉

)
=

1
4κ2 2κ2 =

1
2

Therefore we find that the central charge for the free boson on a 2 dimensional worldsheet is given by c = 1.

22



5 Other Conformal Field Theories

We have seen that conformal invariance implies strong constraints, so strong that we can actually write out many
of the generators just by the knowledge that the theory is conformal invariant. We also have seen that a certain
simple string theory can be formulated as a conformal field theory. But why should we study a theory that only
applies to very trivial theories? It turns out that we are not restricted to only those. There are many non trivial
systems obeying a conformal symmetry.

• Statistical Mechanics

– Ising model on a hypercubic lattice near its critical point

– Critical Potts model as a generalization of the Ising model in various dimensions

– Critical O(N) models as generalization of the Potts model

• Theories build from generalized free fields (Mean Field Theories)

• Large N limit for the Yang - Mills Theories of type SU(N)

• String Theories

• Scale invariant theories (with certain restrictions, for example d=2)

– High energy effective theory (m ≈ 0)

Further reasons to study this topic are results like the AdS/CFT correspondence. It is a duality between certain
string theories on an Anti-de-Sitter space which describe a possible formulation of a quantum gravity and certain
conformal field theories formulated on the boundary of this space. This serves as a possible stepping stone for a
unification of quantum gravity and particle physics. This duality is not yet fully proven.
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